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Dispersion of Thermoelastic Waves in a Plate With
and Without Energy Dissipation

K. L. Verma1, 2 and N. Hasebe3
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In this paper, the dispersion and energy dissipation of thermoelastic plane har-
monic waves in a thin plate bounded by insulated traction-free surfaces is
studied on the basis of three generalized theories of thermoelasticity. The fre-
quency equations corresponding to the symmetric and antisymmetric modes of
vibration of the plate are obtained. Some limiting and particular cases of the
frequency equations are then discussed. Results obtained in three theories of
generalized thermoelasticity are compared. The results for the coupled thermo-
elasticity can be obtained as particular cases of the results by setting thermal
relaxations times equal to zero. Numerical evaluations relating to the lower
modes of the symmetric and antisymmetric waves are presented for an
aluminum alloy plate.

KEY WORDS: energy dissipation; frequency; harmonic waves; plate; thermal
relaxations; thermoelasticity.

1. INTRODUCTION

It is well known that the propagation of elastic waves in an infinite elastic
plate with traction free surfaces is governed by the Rayleigh�Lamb fre-
quency equation [1]. The classical Rayleigh�Lamb waves may be classified
by their symmetry with respect to the middle plane. In the classical theory
of thermoelasticity, when a homogeneous isotropic elastic solid is subjected
to a thermal or mechanical disturbance, the effects in the temperature and
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displacement fields are felt at an infinite distance from the source of distur-
bance instantaneously. This implies that thermal waves propagate with an
infinite velocity, which is physically impossible. During the last three
decades, nonclassical theories have been developed, which are free from
this paradox.

The thermoelastic theories proposed by Lord and Shulman [2] and
Green and Lindsay [3] (here called the LS and GL theories, respectively)
have aroused much interest in recent years. These theories are generaliza-
tions of the coupled thermoelasticity theory [4] and are formulated by
using a form of the heat conduction equation that includes the time needed
for acceleration of the heat flow. The LS theory introduces a single time
constant to dictate the relaxation of thermal propagation, as well as the
rate of change of strain rate and the rate of change of heat generation. In
the GL theory, on the other hand, thermal and thermomechanical relaxa-
tions are governed by two different time constants. These theories eliminate
the paradox of infinite velocity of heat propagation. In the GL theory, the
heat cannot propagate at a finite speed unless the stresses depend on the
thermal wave velocity, whereas in LS theory the heat can propagate at a
finite speed even though the stresses are independent of the thermal wave
velocity. Thus, the physical interpretations as well as the assumptions of
dynamic thermoelastic processes of the LS and GL theories are distinc-
tively different. Many studies have explored this difference to quantify the
implications of their differences in particular field problems, e.g., the
reciprocity theorem, the uniqueness of a solution, and an energy law, for
both theories.

Recently, the theory of thermoelasticity without energy dissipation,
which provides sufficient basic modifications to the constitutive equation to
permit treatment of a much wider class of flow problems, has been
proposed by Green and Naghdi [5] (called the GN theory). The discussion
presented in Ref. 5 includes the derivation of a complete set of governing
equations of the linearized version of the theory for homogeneous and
isotropic materials in terms of displacement and temperature fields and a
proof of the uniqueness of the solution of the corresponding initial mixed
boundary value problem. The uniqueness of the solution for an initial
boundary value problem in this theory, formulated in terms of stress and
energy flux, has been established in Ref. 6. Chandrasekharaiah and Srinath
[7] investigated one-dimensional wave propagation in the context of the
GN theory. Verma [8] studied the field equations of linear thermoelasticity
in the GN theory with the help of integral transforms. They have discussed
the dynamic behavior of an elastic half-space due to a thermal shock and
a mechanical load on the boundary and found that the disturbances consist
of two coupled waves that propagate with finite speeds, without attenuation.
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Derisiewicz [9] considered the propagation of waves in thermoelastic
plates under plane strain. The propagation of thermoelastic waves in a
plate under plane stress by using generalized theories of thermoelasticity
has been studied by Chandrasekharaiah and Srinath [10], and by Massalas
[11]. We refer the reader to several reviews and papers [12�18] on this
topic that have considered the propagation of generalized thermoelastic
waves in plates of isotropic media under different boundary conditions.
Massalas and Kalpakidis [19] used the LS theory to study the charac-
teristics of wave motion in a thin plate under plane stress with mixed
boundary conditions. They used Lame� 's potentials to derive the frequency
equation. Verma and Hasebe [20] studied the propagation of general-
ized thermoelastic vibrations in infinite plates using the LS and GN
theories.

In this paper, we investigate the propagation of plane harmonic waves
in an infinite homogeneous isotropic plate of thickness 2d using the GL
and GN theories of generalized thermoelasticity. The frequency equations
corresponding to the symmetric and antisymmetric modes of vibration of
the plate are obtained; some limiting and particular cases of the frequency
equations are then discussed. A comparison of the results for the GL, LS,
and GN theories of generalized thermoelasticity is also presented. We
found that in the GN theory, coupled waves propagate at finite speeds,
without attenuation. It has also been observed that, on the whole, the
results obtained with the GN theory are qualitatively similar to those with
the GL and LS theories. Numerical evaluations relating to the lower modes
of the symmetric and antisymmetric waves are presented for an aluminum
alloy plate.

2. HARMONIC WAVES IN A THERMOELASTIC PLATE

We consider an infinite homogeneous isotropic thermally conducting
elastic plate at uniform temperature T0 in the undisturbed state having
thickness 2d. Let the faces of the plate be the planes z=\d, referring to
a rectangular set of Cartesian axes O(x, y, z). We choose the x axis to be
the direction of propagation of waves so that all particles on a line parallel
to the y axis are equally displaced. Therefore, all the field quantities will be
independent of the y coordinate. The motion is supposed to take place in
two dimensions (x, z). Here u and w are the displacements in the x and z
directions, respectively. In the linear generalized theory of thermoelasticity,
the governing field equations for the temperature T (x, z, t) and the dis-
placement vector u(x, z, t)=(u, 0, w) in the absence of body forces and
heat sources are given by Ref. 3.
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;=(3*+2+) at

* and + are Lame� 's parameters; \ is the density of the medium; Ce is the
specific heat at constant strain; {0 and {1 are the thermal and thermo-
mechanical relaxation times, respectively; and K and :t are, respectively,
the coefficients of thermal conductivity and linear thermal expansion. The
parameters {0 and {1 satisfy the inequality {1�{0�0.

If {1{0, the stresses depend on the thermal wave velocity, and if
{0{0, the heat propagates at a finite speed. Since {0{0 implies {1{0, it
follows that the heat cannot propagate at a finite speed, unless the stresses
depend on the thermal wave velocity.

We define the following dimensionless quantities:

x*=
&1

k1

x, z*=
&1

k1

z, t*=
&2

1

k1

t

u*=
&3

1\
k1 ;T0

u, w*=
&3

1\
k1;T0

w, T*=
T
T0

(2)

{0*=
&2

1

k1

{0 , {1*=
&2

1

k1

{1 , c2=
+

2(*+2+)

c3=1&c2 , =1=
;2T0

\Ce&2
1

where &1=((*+2+)�\)1�2 is the velocity of compressional waves and
k1=K�(\Ce) is the thermal diffusivity in the x direction. Here =1 is the
thermoelastic coupling constant, and {0* and {1* are the thermal relaxation
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constants. On substituting Eq. (2) into Eq. (1), after suppressing the V, we
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The stresses relevant to our problem in the plate are

{zz=_(1&2c2)
�u
�x

+
�w
�z

&\T+{1

�T
�t +& ;T0

(4)

{zx=;T0c2 \�u
�z

+
�w
�x+

and �T��z is the temperature gradient.
For a plane harmonic wave traveling in the x direction, the solutions

u, w, and T of Eq. (3) take the form

(u, w, T )=( f (z), g(z), h(z)) exp[i!(x&ct)] (5)

where c (=|�!) and ! are the phase velocity and wave number, respec-
tively; | is the circular frequency; and i=- &1. Substituting for u, w, and
T from Eq. (5) into Eq. (3), we get

(c2D2&!2+!2c2) f+i!c3 Dg&!2c{G h=0

i!c3 Df+(D2&c2 !2+!2c2) g&i!c{G Dh=0

!2=1 cf&i!c=1 Dg&(D2&!2+{!2c2) h=0

where

D=
d
dz

, {={0+
i

!c
, {G={1+

i
!c
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The solution to Eqs. (6) is

f (z)=P1 exp(&!s1 z)+P2 exp(&!s2 z)+P3 exp(&!s3 z)

+Q1 exp(!s1 z)+Q2 exp(!s2z)+Q3 exp(!s3 z)

g(z)=m1P1 exp(&!s1 z)+m2P2 exp(&!s2 z)+m3 P3 exp(&!s3z)
(7)

&m1Q1 exp(!s1z)&m2Q2 exp(!s2z)&m3Q3 exp(!s3z)

h(z)=![l1 P1 exp(&!s1z)+l2P2 exp(&!s2 z)+l3P3 exp(&!s3z)

+l1 Q1 exp(!s1 z)&l2 Q2 exp(!s2z)&l3Q3 exp(!s3z)]

where

mj=isj , m3=0
(8)

lj=
1
i

[s2
j +c2&1], l3=0, j=1, 2

Pj and Qj ( j=1, 2, 3 ) are arbitrary constants, and s2
1 and s2

2 are the roots
of the equation

s4+As2+B=0 (9)

where

A=[(c2&2)+({c2+=1{Gc2)]

B=[1&({c2+=1{G c2)+c4{&c2)]

and

s2
3=1&

c2

c2

(10)

s2
1 and s2

2 correspond to the longitudinal and thermal waves, whereas s2
3

corresponds to the transverse wave. This is in agreement with the corre-
sponding results obtained by Nayfeh and Nasser [24].
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The displacements and temperature of the plate are thus

u=[P1 exp(&!s1 z)+P2 exp(&!s2z)+P3 exp(&!s3z)

+Q1 exp(!s1 z)+Q2 exp(!s2 z)+Q3 exp(!s3 z)] exp[i!(x&ct)]

w=[m1P1 exp(&!s1z)+m2P2 exp(&!s2 z)+m3P3 exp(&!s3z)

&m1Q1 exp(!s1z)&m2Q2 exp(!s2 z) (11)

&m3Q3 exp(!s3z)] exp[i!(x&ct)]

T=![l1P1 exp(&!s1z)+l2P2 exp(&!s2 z)+l3P3 exp(&!s3z)

+l1Q1 exp(!s1z)+l2 Q2 exp(!s2 z)+l3Q3 exp(!s3z)] exp[i!(x&ct)]

3. FREQUENCY EQUATIONS AND THERMOELASTIC
DISSIPATION

The boundary conditions are that stresses and the temperature
gradient on the surfaces of the plate should vanish. Hence, for all x and t,

{zz={xz=T , z=0 on z= \d (12)

Substituting the expression, Eq. (11), for the displacement components and
temperature into Eq. (4), we obtain the stresses and the temperature
gradient. Substituting the expressions for the stresses and the temperature
gradient, Eq. (12), we obtain six equations involving the arbitrary con-
stants P1 , P2 , P3 , Q1 , Q2 , and Q3 :

:
3

j=1

(iF&mjsj&lj)(Pje&!sj d+Qje!sj d )=0

:
3

j=1

(imj&sj)(Pje&!sj d&Qje!sj d )=0

:
3

j=1

(&ljsj)(Pje&!sj d&Qje!sj d )=0

(13)

:
3

j=1

(iF&mjsj&lj)(Pje!sj d+Qj e&!sj d )=0

:
3

j=1

(imj&sj)(Pje!sj d&Qj e&!sj d )=0

:
3

j=1

(&ljsj)(Pje!sj d&Qj e&!sj d )=0
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where

F=1&2c2

For the six boundary conditions to be satisfied simultaneously, the deter-
minant of the coefficients of the arbitrary constants must vanish. This gives
an equation for the frequency of the plate oscillations. The frequency equa-
tion is found to factorize into two factors, each of which yields the equations,

D1G1 coth(!s1d )&D2 G2 coth(!s2 d )+D3 G3 coth(!s3 , d )=0
(14)

D1G1 tanh(!s1d )&D2G2 tanh(!s2 d )+D3G3 tanh(!s3 , d )=0

where

Dj=iF&mjsj&lj

G1=&Y3Z2 , G2=&Y3Z1 , G3=Y1 Z2&Y2 Z1

Yj=imj&sj , Zj=&ljsj , j=1, 2, 3

mj and lj are given in Eqs. (8).
These are the periodic equations, which correspond to the symmetric

and antisymmetric motion of the plate with respect to the medial plane
z=0. It can be shown that first Eq. (14) corresponds to the symmetric
motion, while the second corresponds to the antisymmetric motion.

The displacements and temperature in the symmetric motion are given
by

u=H1 cosh(!s1d )+H2 cosh(!s2 d )+H3 cosh(!s3d )] exp[i!(x&ct)]

w=&[m1H1 sinh(!s1d )+m2 H2 sinh(!s2 d )
(15)

+m3H3 sinh(!s3d )] exp[i!(x&ct)]

T=[l1H1 cosh(!s1 d )+l2H2 cosh(!s2d )] exp[i!(x&ct)]

and those in the antisymmetric motion by

u=H1 sinh(!s1 d )+H2 sinh(!s2d )+H3 sinh(!s3d )] exp[i!(x&ct)]

w=&[m1H1 cosh(!s1 d )+m2 H2 cosh(!s2 d )
(16)

+m3H3 cosh(!s3d )] exp[i!(x&ct)]

T=[l1 H1 sinh(!s1d )+l2H2 sinh(!s2d )] exp[i!(x&ct)]

where mj ( j=1, 2, 3) and lk (k=1, 2) are given in Eqs. (8).
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If {={G{0, Eqs.(14) become the frequency equations in the LS
theory of generalized thermoelasticity, which have been discussed by
Verma and Hasebe [20]. Massalas and Kalpakidis [19] have derived and
discussed the frequency equation for a very thin thermally insulated
isotropic plate in the context of the LS theory, mixed boundary conditions,
and isothermal and insulated edges. The discussion of the transcendental
Eqs. (14), in general, is difficult; we, therefore, consider the results for some
limiting cases.

4. SYMMETRIC MODES

For wavelengths long compared with the thickness 2d of the plate, !d
is small, and consequently, !ds1 , !ds2 , and !ds3 may be assumed small as
long as c is finite. Hence, the hyperbolic functions can be replaced by their
arguments and the first Eq. (14) reduces to

(s2
1&s2

2)[(1+s2
3)2 [s2

1+s2
2+c2&1]&4s2

1s2
2]=0 (17)

where

s2
1+s2

2= &[(c2&2)+({c2+=1{Gc2)]
(18)

s2
1s2

2=[1&({c2+=1{G c2)+c4{&c2]

Hence, either

(s2
1&s2

2)=0

or

[(1+s2
3)2 [s2

1+s2
2+c2&1]&4s2

1 s2
2]=0 (19)

If s2
1=s2

2 , the form of the original solution assumed, cannot satisfy the
boundary conditions. Hence, Eq. (19) holds. Substituting the expressions
for s2

1+s2
2 and s2

1s2
2 from Eq. (18) and s2

3=1&(c2�c2) into Eq. (19), we
obtain

_2&
c2

c2&
2

[1&c2({+=1{G)]=4[(c2{&1)(c2&1)&=1 c2{G] (20)

This equation gives the phase velocity of long compressional or plate waves
cp [normalized form by dividing - (*+2+)�\=&1] according to the
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generalized theory of thermoelasticity. For an aluminum plate, for which
the physical data are given in Section 8, the velocity of plate waves is found
to be cp=0.552 (nondimensional).

The thermoelastic coupling factor =1 is usually small [4]. If we neglect
this factor, then Eq. (20) reduces to

c2=4;2 \1&
;2

:2+ (21)

which agrees with Ewing et al. [22].
For the case of very short wavelengths and c, with s1 , s2 , and s3 real,

!d is large and the hyperbolic functions tend to unity, the first frequency
Eq. (14) becomes

(s1&s2)[&(1+s2
3)2 [s2

1+s2
1+s1s2+c2&1]+4s1 s2s3(s1+s2)]=0 (22)

Evidently (s1&s2) is a factor. Factorizing Eq. (22), we obtain

[&(1+s2
3)2 [s2

1+s2
1+s1s2+c2&1]+4s1s2s3(s1+s2)]=0 (23)

Equation (23) can be identified as the phase velocity equation for Rayleigh
waves in isotropic half-space. This is in agreement with the corresponding
result of Nayfeh and Nasser [24]. For an aluminum alloy plate, Rayleigh
waves are found to propagate with a velocity cR=0.384 (nondimensional).

If we set {1={0=0 (the case of coupled thermoelasticity), when there
is no thermal relaxation time, expressions for { and {G defined after Eq. (6)
reduce to {={G=i�!c. Proceeding along the same lines as in the previous
section, we obtain an equation similar to Eq. (23), with s1 and s2 given by

s2
1+s2

2= &[c2&2+ci!&1(1+=1)]
(24)

s2
1s2

2=[(ci!&1&1)(c2&1)&ci!&1=1]

and s3 is given in Eq. (9).
Substituting the value of s2

1+s2
2 , s2

1s2
2 from Eq. (24), with the condition

| (=!c)<<1, in Eq. (23), after some algebraic manipulations, Eq. (23)
reduces to

(1+=1) _2&
c2

c2&
4

=16((1+=1)&c2) \1&
c2

c2+ (25)

which agrees with Ref. 23.
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In the classical case when the strain and thermal fields are uncoupled
from each other, then the coupling constant =1 is identically zero, and Eq. (25)
reduces to

_2&
c2

c2&
4

=16(1&c2) \1&
c2

c2+ (26)

This is in agreement with the corresponding result of Nayfeh and Nasser
[24].

If we set {1={0 , then it is seen that the results obtained in the GL
theory reduce to the results in the LS theory of generalized thermo-
elasticity.

5. ANTISYMMETRIC MODES

For wavelengths long compared to the thickness of the plate, with s1 , s2 ,
and s3 real, we may replace the hyperbolic functions by the approximation

tanh$x&x3�3 (27)

After some algebraic transformation and reductions, and neglecting the
quantities of O[!d]3 in the second Eq. (14), we obtain

c2

c2

&
4!2d 2

3 _(c2&1) \1+
c2

c2+&
c2

4c2

(c2&1)& (28)

This is the dispersion equation for long flexural waves, and it can be seen
that the phase velocity tends to zero as the wavelength increases to infinity.

For wavelengths short compared with the thickness of the plate, that
is, !d � �, and c such that s1 , s2 , and s3 are real, the second Eq. (14)
reduces to the Rayleigh Eq. (23), and the propagation degenerates to the
Rayleigh waves associated with both free surfaces of the plate in
generalized thermoelasticity.

If we take {1={0 , then all the results in the GL theory reduce to the
corresponding results in the LS theory of generalized thermoelasticity. If
{0={1=0, then the results obtained here reduce to the coupled thermo-
elasticity (here in the dimensionless form).

6. THERMOELASTICITY WITHOUT ENERGY DISSIPATION

The fundamental equations for such a medium, with heat sources and
body forces absent, in the context of generalized thermoelasticity developed
by Green and Naghdi [5], are given by
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+ \�2u
�x2+

�2u
�z2++(*++) \�2u

�x2+
�2w

�x �z+&;
�T
�x

=\
�2u
�t2

+ \�2w
�x2 +

�2w
�z2 ++(*++) \�2w

�z2 +
�2u

�x �z+&;
�T
�z

=\
�2w
�t2

(29)

K* \�2T
�x2 +

�2T
�z2 +&\C

�2T
�t2 =;T0 \ �3u

�x �t2+
�3w

�z �t2+
;=(3*+2+) :t

where K* is a characteristic constant of the medium, and \ and C are,
respectively, the mass density and specific heat at constant strain. All other
symbols and notations used in Eqs. (29) have the same meaning as defined
in Eqs. (1).

C 2
1=

*+2+
\

, C 2
2=

+
\

, C 2
3=

K*
\C

=|*&1C 2
1 (30)

|*=C(*+2+)�K* is the characteristic frequency of the medium.
Substituting u, w, and T from Eqs. (5) into Eqs. (29) and using Eq. (30),

we obtain

(C 2
2 D2&C 2

1!2+!2c2) f+i!(C 2
1&C 2

2) Dg&iC 2
1!h=0

i!(C 2
1&C 2

2) Df+(C 2
1D2&C2!2+!2c2) g&C 2

1 Dh=0 (31)

i!3=1 c2f+=1!2c2 Dg+(C 2
3(D2&!2)+!2c2) h=0

where D, =1 , and ! have the same meaning as defined in the previous
sections.

The solution to Eqs. (31) is again of the form in Eq. (7), where

mj=isj , m3=0, j=1, 2
(32)

lj=
1

iC 2
1

[C 2
1s2

j &C 2
1+c2], l3=0, j=1, 2

s2
1 and s2

2 are the roots of the equation

s4+As2+B=0 (33)
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where

A=
[(1+=1) C 2

1+C 2
3) c2&C2

1C2
3)]

2

B=
[c4&[(1+=1) C 2

1+C 2
3] c2&C2

1C2
3]

2

2=C 2
1C2

3

and

s2
3=1&

c2

C2

(34)

s2
1 and s2

2 correspond to the coupled longitudinal and thermal waves,
whereas s2

3 corresponds to the transverse wave in thermoelasticity without
energy dissipation.

When there is no coupling, i.e., =1=0, then Eq. (33) further factorizes to

s2
1=

c2

C 2
1

&1, and s2
2=

c2

C 2
3

&1 (35)

Thus, we see that s2
1 and s2

2 correspond to purely elastic and thermal waves,
respectively.

Invoking the boundary conditions in Eq. (12) on the plate outer boun-
daries, frequency equations, displacements, and temperatures for the sym-
metric and antisymmetric wave modes, corresponding to Eqs. (14)�(16) of
the LS and GL theories, are obtained in the GN theory, with s2

1 , s2
2 ,

mj ( j=1, 2, 3), and lk (k=1, 2) being given in Eqs. (33) and (34), respec-
tively.

Discussion of the frequency equations obtained for the linear theory of
thermoelasticity without energy dissipation is, in general, difficult; we,
therefore, consider the results for some limiting cases.

6.1. Symmetric Modes

For wavelengths long compared with the thickness 2d of the plate, the
first Eq. (14) in the GN theory reduces to

_2&
c2

C 2
2&

2

[C 2
1C2

3&c2[C 2
3+(1+=1) C 2

1]+c2C 2
1C 2

3]

=4[(c4&c2[C 2
3+(1+=1) C 2

1]+C2
1C 2

3 (36)
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This equation gives the phase velocity of long compressional or plate waves
in the linear theory of thermoelasticity without energy dissipation.

For very short wavelengths, and c, s1 , s2 , and s3 are real, !d is large,
and the hyperbolic functions tend to unity. Then in the GN theory, we
obtain the frequency equations analogous to Eqs. (22) and (23) in the con-
text of the LS and GL theories, with s1 and s2 given in Eq. (33).

In the special case where the strain and thermal fields are uncoupled
from each other, the coupling constant =1 is identically zero, and Eq. (23)
in the GN theory reduces to

_2&
c2

C 2
2&

4

=16(1&c2) \1&
c2

C 2
2+ (37)

which is again of the same form as Eq. (26) in the LS and GL theories,
with C 2

2 given in Eq. (30) for the GN theory.

6.2. Antisymmetric Modes

For wavelengths long compared with the thickness of the plate, s1 , s2 ,
and s3 are real. We may replace the hyperbolic functions with the
approximation of Eq. (27). Then Eq. (28) reduces to

c2

C 2
2

&
4!2d 2

3 _(C 2
2&1) \1+

c2

C 2
2+&

c2

4C 2
2

(c2&1)& (38)

which is of the same form as Eq. (28) in the LS and GL theories, with C 2
2

as in Eq. (30) for the GN theory.
This is the dispersion equation for long flexural waves, and it can be

seen that the phase velocity tends to zero as the wavelength increases to
infinity in the linear theory of thermoelasticity without energy dissipation.

For wavelengths short compared with the thickness of the plate, that
is, !d � �, and c such that s1 , s2 , and s3 are real, Eqs. (14) reduce to the
Rayleigh Eq. (23), and the propagation degenerates to the Rayleigh waves
associated with both free surfaces of the plate in this theory.

7. DISCUSSION AND CONCLUSIONS

As discussed earlier, the frequency Eqs. (14) are complex so that these
transcendental equations enable us to evaluate not only the phase velocity,
but also the thermoelastic energy dissipation for the propagation of ther-
moelastic waves in an infinite plate. In general, the waves are dispersive
and dissipate energy according to the LS and GL theories of generalized
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Table I. Physical Properties of an Aluminum Alloy

Young's modulus E 72.6 GPa
Poisson ratio & 0.33
Density \ 2800 kg } m&3

Specific heat Ce 960 J } kg&1 } K&1

Thermal diffusivity k1 7_10&5 m2 } s&1

Expansion coefficient :t 2.35_10&5 K&1

Initial temperature T0 293 K

thermoelasticity. To find the manner in which the long and short wavelength
limits are connected requires numerical solution of Eqs. (14). Moreover, for
values of c which make s1 , s2 , and s3 imaginary, the hyperbolic functions
become periodic and so an infinite number of higher modes exists. Com-
putations for the symmetric and antisymmetric modes have been carried
out for an aluminum alloy plate whose physical data are given in Table I.

The phase and group velocities [c and U=c+!(dc�d!), respectively]
and dispersion curves are plotted as a function of the wave number assum-
ing that the thickness 2d of the plate is fixed. These curves have been
calculated from an expression based on the dispersion relation in Eqs. (14),
which are decoupled characteristic equations corresponding to symmetric
and antisymmetric modes of vibrations according to the LS and GL
theories of generalized thermoelasticity.

The additional new mode to those already observed in purely elastic
materials is the quasi-thermal mode (T-mode). Dispersion curves for sym-
metric and antisymmetric modes in LS and GL theories of generalized
thermoelasticity are shown in Figs. 1 and 2. The various modes approach
each other and then merge as the wave number increases, where the phase
and group velocities tend toward the Rayleigh surface wave speed. It is
observed that wave modes are more affected at the zero wave-number
limits, due to the thermomechanical effects, which supports the idea that
second sound effects are short- lived. This clearly demonstrates the dif-
ference between the coupled and the generalized theory of thermoelasticity.
In the first mode of symmetric vibration, the phase velocity decreases
monotonically with increasing values of wave number, from cp (plate
velocity) at !=0 to cR (Rayleigh surface wave speed) at !=�. The group
velocity has the same asymptotic limits but has a minimum. In the second
mode, the phase velocity is higher than the horizontally polarized shear
[cH=(+�\)1�2] or SH wave in the plate. Again, c � � and U � 0 as ! � 0,
and as ! � �, c and U � the horizontally polarized shear [cH=(+�\)1�2]
or SH wave in the plate. Both the maximum and the minimum values of
group velocity are associated with this mode at intermediate wave numbers.
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Fig. 1. Dispersion curves in the LS and GL theories of generalized thermoelasticity for
antisymmetric modes.

Similar relations between phase and group velocity for higher modes are
demonstrated in the dispersion curves in Fig. 1.

In the first mode of antisymmetric vibration (Fig. 2) the phase velocity
increases monotonically with increasing values of wave number ! from
c=0 at !=0 to c=cR at !=�. As ! � 0, U � 0, which is characteristic
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Fig. 2. Dispersion curves in the LS and GL theories of generalized thermoelasticity for
symmetric modes.
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of flexural waves, and as ! � �, c and U � cR in the plate. The maximum
value of group velocity is equal to the horizontally polarized shear [cH=
(+�\)1�2] or SH wave in the plate. The results obtained for flexural mode
(first mode) are in agreement with corresponding results obtained by
Ewing et al. [22] (see their Figs. 6�18). Dispersion curves (antisymmetric)
for phase and group velocities for higher modes in the LS and GL theories
are shown in Fig. 2. The maximum value of the phase and group velocity
curves for the fourth mode (antisymmetric), Fig. 2, and fifth mode (sym-
metric), Fig. 1, approach the c axis at a low wave number, at such large
values that these are multiplied by 10&4 so that they can be seen in the
figures. Although the waves in the context of the GL theory are subject to

Fig. 3. Dispersion curves for antisymmetric wave modes in the GN theory of thermo-
elasticity.
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stronger modifications than those in the LS theory; in general, both
theories lead to similar conclusions and results.

Similar dispersion curves for antisymmetric and symmetric modes
according to the GN theory of generalized thermoelasticity for an aluminum
plate are shown in Figs. 3 and 4. It has been found that phase velocity is
equal to group velocity, i.e., c=U for the second and third modes (antisym-
metric) and third and fourth modes (symmetric), and therefore, these modes
show no dispersion in the GN theory.

As the exponential term in Eqs. (5) is a function of x and t, thermo-
elastic waves may undergo spatial attenuation in the direction of propaga-
tion. Specifically, for a given value of wave number !, c must be a complex
number of the form c=cre+icim in both the LS and the GL theories of

Fig. 4. Dispersion curves for symmetric wave modes in the GN theory of thermo-
elasticity.
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generalized thermoelasticity. In this case, from the exponential term in
Eqs. (5), we can see that Re(c)=cre gives the phase velocity and the
imaginary part, Im(c)=cim of c gives the attenuation coefficient for waves.
Figures 5 and 6 show the wave-number dependence of the attenuation coef-
ficient for antisymmetric and symmetric waves in a thermoelastic aluminum

Fig. 5. Wave-number dependence of the thermoelastic attenuation constant in the GL
and LS theories of generalized thermoelasticity for antisymmetric modes.
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Fig. 6. Wave-number dependence of the thermoelastic attenuation constant in the
GL and LS theories of generalized thermoelasticity for symmetric modes.

alloy plate. Each of the curves in these figures corresponds to one of the
branches in Figs. 1 and 2 (up to the first four modes), respectively.

Furthermore, the solutions obtained in the GN theory show that there
exist symmetric and antisymmetric modes of coupled (thermal and elastic
wave modes) waves, without any attenuation. That this is not the case in
the LS and GL theories is an interesting feature inherent in the GN theory.
In the LS and GL theories, waves experience attenuation, and the attenuation
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factors decay exponentially [25, 26]. It has also been observed that the
predictions of the GN theory are qualitatively similar to those of the LS
and GL theories.

When the thermal relaxation time {0 � 0, then the results obtained in
the analysis reduce to the conventional coupled theory of thermoelasticity.
When the coupling constant =1 is identically equal to zero, the strain and
thermal fields are uncoupled from each other. In this case the results can
be obtained from the uncoupled theory of thermoelasticity.
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